Shprintzen-Goldberg Syndrome

Summary

Clinical characteristics.

Shprintzen-Goldberg syndrome (SGS) is characterized by: delayed motor and cognitive milestones and mild-to-moderate intellectual disability; craniosynostosis of the coronal, sagittal, or lambdoid sutures; distinctive craniofacial features; and musculoskeletal findings including olichostenomelia, arachnodactyly, camptodactyly, pectus excavatum or carinatum, scoliosis, joint hypermobility or contractures, pes planus, foot malposition, and C1-C2 spine malformation. Cardiovascular anomalies may include mitral valve prolapse, secundum atrial septal defect, and aortic root dilatation. Minimal subcutaneous fat, abdominal wall defects, and myopia are also characteristic findings.

Diagnosis/testing.

The diagnosis of SGS is established in a proband with a heterozygous pathogenic variant in SKI identified by molecular genetic testing.

Management.

Treatment of manifestations: Early intervention for developmental delay with placement in special education programs; standard management of cleft palate and craniosynostosis; surgical fixation may be necessary for cervical spine instability; routine management for scoliosis; surgical correction for pectus excavatum is rarely indicated; physiotherapy for joint contractures; clubfoot deformity may require surgical correction. If aortic dilatation is present, treatment with beta-adrenergic blockers or other medications should be considered in order to reduce hemodynamic stress; surgical intervention for aneurysms may be indicated; treatment of myopia as per ophthalmologist; surgical repair of abdominal hernias as indicated.

Prevention of secondary complications: Subacute bacterial endocarditis prophylaxis is recommended for dental work or other procedures for individuals with cardiac complications.

Surveillance: Developmental assessment with each visit; cervical spine evaluation and clinical evaluation for scoliosis as recommended by orthopedist; imaging per cardiologist familiar with this condition; ophthalmology exams as recommended by ophthalmologist.

Agents/circumstances to avoid: Contact sports; use of agents that stimulate the cardiovascular system; activities that may lead to joint pain and/or injury.

Genetic counseling.

SGS, resulting from a heterozygous pathogenic variant in SKI, is an autosomal dominant disorder. Most individuals with SGS have unaffected parents, suggesting that the causative variant has occurred either as a de novo event in the affected individual or as a result of germline mosaicism in one of the parents. Affected sibs born to unaffected parents support the occurrence of germline mosaicism in some families with SGS. Once a SKI pathogenic variant has been identified in an affected family member, prenatal testing for a pregnancy at increased risk and preimplantation genetic testing are possible.

Diagnosis

Formal diagnostic criteria for Shprintzen-Goldberg syndrome (SGS) have not been established.

Suggestive Findings

SGS should be suspected in individuals with a combination of the following clinical (see Figure 1) and radiographic features:

Figure 1. . Clinical features of Shprintzen-Goldberg syndrome.

Figure 1.

Clinical features of Shprintzen-Goldberg syndrome. Note craniosynostosis with typical craniofacial features including dolichocephaly, proptosis, hypertelorism, low-set ears, and retrognathia. Hand and foot images show arachnodactyly and camptodactyly. (more...)

  • Neurodevelopment. Hypotonia, delayed motor and cognitive milestones, mild-to-moderate intellectual disability
  • Craniosynostosis usually involving the coronal, sagittal, or lambdoid sutures
  • Craniofacial findings
    • Dolichocephaly with or without scaphocephaly
    • Tall or prominent forehead
    • Hypertelorism
    • Downslanting palpebral fissures
    • Ocular proptosis
    • Malar flattening
    • High narrow palate with prominent palatine ridges
    • Micrognathia and/or retrognathia
    • Apparently low-set and posteriorly rotated ears
  • Musculoskeletal findings
    • Dolichostenomelia
    • Arachnodactyly
    • Camptodactyly
    • Pectus excavatum or carinatum
    • Scoliosis
    • Joint hypermobility or contractures
    • Pes planus
    • Foot malposition/talipes equinovarus/club foot
    • C1-C2 spine malformation
  • Cardiovascular anomalies. Mitral valve prolapse/valvular anomalies, secundum atrial septal defect, aortic root dilatation
  • Brain anomalies. Chiari 1 malformation
  • Other. Minimal subcutaneous fat, abdominal wall defects, and myopia

Establishing the Diagnosis

The diagnosis of SGS is established in a proband with a heterozygous pathogenic variant in SKI identified by molecular genetic testing (see Table 1).

Molecular genetic testing approaches can include a combination of gene-targeted testing (single-gene testing and multigene panel) and comprehensive genomic testing (exome sequencing, exome array, genome sequencing) depending on the phenotype.

Gene-targeted testing requires that the clinician determine which gene(s) are likely involved, whereas genomic testing does not. Because the phenotype of SGS is broad, individuals with the distinctive findings described in Suggestive Findings are likely to be diagnosed using gene-targeted testing (see Option 1), whereas those with a phenotype indistinguishable from many other inherited disorders with craniosynostosis and additional congenital anomalies are more likely to be diagnosed using genomic testing (see Option 2).

Option 1

When the phenotypic and laboratory findings suggest the diagnosis of SGS, molecular genetic testing approaches can include single-gene testing or use of a multigene panel:

  • Single-gene testing. Sequence analysis of SKI to detect small intragenic deletions/insertions and missense, nonsense, and splice site variants.
  • A multigene panel that includes SKI and other genes of interest (see Differential Diagnosis) is most likely to identify the genetic cause of the condition at the most reasonable cost while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this GeneReview. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.
    For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic tests can be found here.

Option 2

When the phenotype is indistinguishable from many other inherited disorders characterized by craniosynostosis, comprehensive genomic testing (which does not require the clinician to determine which gene[s] are likely involved) is the best option. Exome sequencing is most commonly used; genome sequencing is also possible.

If exome sequencing is not diagnostic – and particularly when evidence supports autosomal dominant inheritance – exome array (when clinically available) may be considered to detect (multi)exon deletions or duplications that cannot be detected by sequence analysis.

For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.

Table 1.

Molecular Genetic Testing Used in Shprintzen-Goldberg Syndrome

Gene 1MethodNumber of Probands with a Pathogenic Variant 2 Detectable by Method
SKISequence analysis 344 4
Gene-targeted deletion/duplication analysis 5None reported 6
1.

See Table A. Genes and Databases for chromosome locus and protein.

2.

See Molecular Genetics for information on allelic variants detected in this gene.

3.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Pathogenic variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

4.

Carmignac et al [2012], Doyle et al [2012], Au et al [2014], Schepers et al [2015], Saito et al [2017], O'Dougherty et al [2019], Zhang et al [2019]

5.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

6.

Contiguous deletion of SKI and adjacent genes has been reported in individuals with a phenotype that appears to be distinct from SGS (see Genetically Related Disorders)

Clinical Characteristics

Clinical Description

To date, 44 individuals have been identified with a pathogenic variant in SKI [Carmignac et al 2012, Doyle et al 2012, Au et al 2014, Schepers et al 2015, Saito et al 2017, O'Dougherty et al 2019, Zhang et al 2019]. The following description of the phenotypic features associated with this condition is based on these reports.

Table 2.

Select Features of Shprintzen-Goldberg Syndrome

Feature# of Persons w/Feature /
# Evaluated for Feature
DD/ID41/44
Hypotonia16/19
Craniosynostosis 131/41
Dolichocephaly/scaphocephaly36/39
Hypertelorism42/43
Downslanting palpebral fissures38/41
Ocular proptosis34/42
Malar flattening24/24
High narrow palate23/23
Micrognathia36/40
Low-set, posteriorly rotated ears23/24
Arachnodactyly43/44
Camptodactyly24/38
Pectus deformity32/40
Scoliosis29/39
Joint hypermobility18/22
Joint contractures32/36
Foot malposition / talipes equinovarus / club foot / pes cavus23/31
C1-C2 spine malformation7/10
Aortic root dilatation14/41
Mitral valve prolapse / valvular anomalies12/38
Abdominal hernias14/23
Minimal subcutaneous fat / marfanoid habitus9/20

DD = developmental delay; ID = intellectual disability

1.

Typically coronal, sagittal, or lambdoid sutures

Neurodevelopment. Motor and cognitive milestones are delayed and intellectual disability is usually mild to moderate. To date, three individuals with Shprintzen-Goldberg syndrome (SGS) and a confirmed SKI pathogenic variant were reported to have normal intelligence [Doyle et al 2012, Schepers et al 2015, Zhang et al 2019].

Craniosynostosis usually involves the coronal, sagittal, or lambdoid sutures. The sutures are fused at birth and craniosynostosis can usually be suspected from the abnormal skull shape. A single suture or multiple sutures may be involved [Au et al 2014]. Information on individuals with SGS who underwent surgery for craniosynostosis in unavailable.

Characteristic craniofacial features include hypertelorism, downslanting palpebral fissures, ocular proptosis, high narrow palate, micrognathia, and low-set posteriorly rotated ears. Cleft palate was reported in three of 17 individuals with SGS [Doyle et al 2012, Schepers et al 2015, O'Dougherty et al 2019]. Broad/bifid uvula has been reported in two of 12 individuals [Doyle et al 2012, O'Dougherty et al 2019].

Musculoskeletal. Arachnodactyly, camptodactyly, pectus deformities, and clubfeet are common features and are present at birth. Joint contractures are often present at birth or in the neonatal period, with the ankle joint most frequently affected [Au et al 2014, Saito et al 2017]. Joint hypermobility also occurs in individuals with SGS and is typically present from birth. Joint dislocation and instability reported by O'Dougherty et al [2019] included involvement of the left patella, thumb, and foot and C1-C2 instability. Au et al [2014] reported subluxing patellae. Pes planus becomes evident later in childhood; one or both feet may be affected. Scoliosis may be severe [Au et al 2014].

Cardiovascular. Aortic root dilatation was present in three of 18 affected individuals reported by Carmignac et al [2012]. In the report of Doyle et al [2012], however, eight of ten individuals with SGS and confirmed pathogenic variants in SKI had aortic root dilatation with or without mitral valve prolapse/incompetence. Surgery at age 16 years for aortic dilatation (aortic root dilatation with Z score = 7.014) was reported in one individual with molecularly confirmed SGS [Carmignac et al 2012]. This individual also had vertebrobasilar and internal carotid tortuosity and a dilated pulmonary artery root. Among the affected individuals with molecularly confirmed SGS reported by Doyle et al [2012] one had arterial tortuosity and two had splenic artery aneurysm – one with spontaneous rupture.

Ocular. Myopia was reported in ten of 19 individuals [Carmignac et al 2012, Au et al 2014, O'Dougherty et al 2019]. Ectopia lentis has not been reported in the 16 individuals with SGS who were evaluated for this finding [Doyle et al 2012, Schepers et al 2015].

Minimal subcutaneous fat and/or marfanoid habitus was reported in nine of 20 individuals [Carmignac et al 2012, Au et al 2014].

Abdominal wall defects were reported in 14 of 23 individuals [Carmignac et al 2012, Au et al 2014, Schepers et al 2015, Saito et al 2017, O'Dougherty et al 2019].

Other

  • Dural ectasia (5/8 individuals) [Doyle et al 2012, Schepers et al 2015, O'Dougherty et al 2019]
  • Chiari 1 malformation (2/3 individuals) [Au et al 2014, O'Dougherty et al 2019]
  • Cryptorchidism (1/1 male) [Saito et al 2017]

Genotype-Phenotype Correlations

No genotype-phenotype correlations have been identified.

Penetrance

Penetrance is unknown.

Nomenclature

Goldberg-Shprintzen syndrome and Shprintzen-Goldberg omphalocele syndrome are separate syndromes, not related to SGS.

Other names that have been used to refer to SGS:

  • Craniosynostosis with arachnodactyly and abdominal hernias
  • Marfanoid-craniosynostosis syndrome
  • Shprintzen-Goldberg craniosynostosis syndrome
  • Shprintzen-Goldberg marfanoid syndrome

The term Furlong syndrome has been used to describe one individual with craniosynostosis, features of SGS, normal intelligence, and aortic enlargement. Adès et al [2006] reported on two individuals with a phenotype similar to Furlong syndrome. They had the same pathogenic missense variant in TGFBR1, making a diagnosis of Loeys-Dietz syndrome type 1 most likely [B Loeys, personal communication]. In the absence of analysis for pathogenic variants in the original individual described as having Furlong syndrome, the existence of this as a separate entity remains unclear.

Prevalence

SGS is a rare disorder and the prevalence is unknown. A SKI pathogenic variant has been identified in 44 individuals with SGS to date.

Differential Diagnosis

Loeys-Dietz syndrome (LDS) and Marfan syndrome (MFS). The phenotype of Shprintzen-Goldberg syndrome (SGS) is distinctive but shows some overlap with LDS and MFS (see Table 3). Distinguishing features of SGS include the following:

  • Hypotonia and intellectual disability are rare findings in individuals with LDS and MFS but appear to be almost always present in those with SGS.
  • Some of the distinctive radiographic findings in SGS are rarely found in individuals with either LDS or MFS. These include:
    • C1/C2 abnormality (in 7/10 individuals with SGS) [Doyle et al 2012, Au et al 2014, Saito et al 2017, O'Dougherty et al 2019];
    • Thirteen pairs of ribs (1/1) [O'Dougherty et al 2019];
    • Chiari 1 malformation (2/3 ) [Au et al 2014, O'Dougherty et al 2019].
  • Aortic root dilatation is less frequent in SGS than in LDS or MFS, but when present in individuals with SGS, it can be severe [Carmignac et al 2012]. One of the hallmarks of LDS is the occurrence of arterial tortuosity and aneurysms in arteries other than the aorta. Arterial tortuosity was found in two individuals with SGS; a further two individuals with SGS had splenic artery aneurysm [Carmignac et al 2012, Doyle et al 2012].

Table 3.

Comparison of Clinical Features of SGS, TGFBR1-/TGFBR2-LDS, and MFS

Clinical FeatureSGSTGFBR1-/TGFBR2-LDS 1MFS 2
DD++
Ectopia lentis+++
Cleft palate / bifid uvula+++
Widely spaced eyes++++
Craniosynostosis+++++
Tall stature+++++
Arachnodactyly+++++++
Pectus deformity++++++
Clubfoot++++
Osteoarthritis++
Aortic root aneurysm++++++
Arterial aneurysm+++
Arterial tortuosityRare++
Early dissection++++
Bicuspid aortic valve++
Mitral valve insufficiency++++
Striae+++
Dural ectasia+++
+

= feature is present; ++ = feature is more commonly present; +++ = feature is most commonly present; − = feature is absent; DD = developmental delay; LDS = Loeys-Dietz syndrome; MFS = Marfan syndrome; SGS = Shprintzen-Goldberg syndrome

1.

Approximately 75%-85% of Loeys-Dietz syndrome is attributed to pathogenic variants in TGFBR2 or TGFBR1. LDS is also known to be associated with heterozygous pathogenic variants in SMAD2, SMAD3, TGFB2, and TGFB3. LDS is inherited in an autosomal dominant manner.

2.

Marfan syndrome is caused by pathogenic variants in FBN1 and inherited in an autosomal dominant manner.

Other disorders

Table 4.

Disorders of Interest in the Differential Diagnosis of Shprintzen-Goldberg Syndrome

GeneDifferential DisorderMOIClinical Features of Differential Disorder
Overlapping w/SGSDistinguishing from SGS
FBN2Congenital contractural arachnodactylyAD
  • Dolichostenomelia, arachnodactyly
  • Kyphosis/scoliosis 1
  • Aortic dilatation (occasionally present)
Most individuals w/CCA have "crumpled" ears that present as a folded upper helix of the external ear.
FLNAFrontometaphyseal dysplasia & Melnick-Needles syndrome (See Otopalatodigital Spectrum Disorders.)XLTall, square-shaped vertebrae; bowed tibiae; occasionally, fusion of upper cervical vertebraePresence of ID & craniosynostosis in SGS usually distinguishes it from MNS or FMD.
B3GAT3B3GAT3-related disorder 2ARCraniosynostosis, midface hypoplasia, kyphoscoliosis, joint contractures, long fingers, foot deformity, cardiovascular abnormalitiesPresence of multiple neonatal fractures, hypoplasia of the nasal bones, femoral bowing, & overlapping fingers helps distinguish this disorder from SGS.
HNRNPKAu-Kline syndromeAD
  • Aortic dilatation
  • Sagittal craniosynostosis, shallow orbits, palate abnormalities, &/or bifid uvula
  • ID (mild to moderate)
  • Skeletal anomalies
  • Marfanoid body habitus
  • Arachnodactyly & camptodactyly
  • Congenital heart disease
  • Hydronephrosis
  • Hearing loss
  • Seizures

AD = autosomal dominant; AR = autosomal recessive; CCA = congenital contractural arachnodactyly; FMD = frontometaphyseal dysplasia; ID = intellectual disability; MNS = Melnick-Needles syndrome; MOI = mode of inheritance; SGS = Shprintzen-Goldberg syndrome; XL = X-linked

1.

Kyphosis/scoliosis in ~50% of individuals with CCA (begins as early as infancy, is progressive, & causes the greatest morbidity in CCA)

2.

Yauy et al [2018]

Management

Evaluations Following Initial Diagnosis

To establish the extent of disease and needs in an individual diagnosed with Shprintzen-Goldberg syndrome (SGS), the evaluations summarized in Table 5 (if not performed as part of the evaluation that led to the diagnosis) are recommended.

Table 5.

Recommended Evaluations Following Initial Diagnosis in Individuals with Shprintzen-Goldberg Syndrome

System/ConcernEvaluation